Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 28(30): 40507-40514, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-2113733

ABSTRACT

After the early advent of the Coronavirus Disease 2019 (COVID-19) pandemic, myriads of FDA-approved drugs have been massively repurposed for COVID-19 treatment based on molecular docking against selected protein targets that play fundamental roles in the replication cycle of the novel coronavirus. Honeybee products are well known of their nutritional values and medicinal effects. Bee products contain bioactive compounds in the form of a collection of phenolic acids, flavonoids, and terpenes of natural origin that display wide spectrum antiviral effects. We revealed by molecular docking the profound binding affinity of 14 selected phenolics and terpenes present in honey and propolis (bees glue) against the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) enzymes of the novel SARS-CoV-2 virus (the causative agent of COVID-19) using AutoDock Vina software. Of these compounds, p-coumaric acid, ellagic acid, kaempferol, and quercetin have the strongest interaction with the SARS-CoV-2 target enzymes, and it may be considered an effective COVID-19 inhibitor.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Animals , Antiviral Agents/pharmacology , Bees , Coronavirus Infections/drug therapy , Humans , Molecular Docking Simulation , SARS-CoV-2
2.
Environ Sci Pollut Res Int ; 29(8): 12336-12346, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1437316

ABSTRACT

Coronavirus disease (COVID-19) is an emerging pandemic that threatens the world since the early days of 2020. Development of vaccines or new drugs against COVID-19 comprises several stages of investigation including efficacy, safety, and approval studies. A shortcut to this delicate pathway is computational-based analysis of FDA-approved drugs against assigned molecular targets of the coronavirus. In this study, we virtually screened a library of FDA-approved drugs prescribed for different therapeutic purposes against versatile COVID-19 specific proteins which are crucial for the virus life cycle. Three antibiotics in our screening polymyxin B, bafilomycin A, and rifampicin show motivating binding stability with more than one target of the virus. Another category of tested drugs is oral antiseptics of mouth rinsing solutions that unexpectedly exhibited significant affinity to the target proteins employed by the virus for attachment and cell internalization. Other OTC drugs widely used and tested in our study are heartburn drugs and they show no significant binding. We tested also some other drugs falling under the scope of investigation regarding interference with a degree of severity of COVID-19 like angiotensin II blockers used as antihypertensive, and our study suggests a therapeutic rather than predisposing effect of these drugs against COVID-19.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Antiviral Agents/pharmacology , Drug Repositioning , Humans , Molecular Docking Simulation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL